

Human Genome Diversity: of human evolution and natural selection

Guillaume LAVAL CNRS URA3012, Unité de Génétique Evolutive Humaine, Institut Pasteur

Human Genetics

Recent major steps in human genetics

The complete sequence of the human genome SNP Discovery and Characterization

3. The HapMap Project (now Phase III)

4. The HGDP-CEPH5. The 1,000 genomes project

gacacetttgt[.]gacacetteatttetgeatteteaattetattteaetggtetatgg

g

a

:ttqtttq

qaqqcqqqca

iaa icc itc

itt

ta tt

lga

JJJ

tta

3 million differences between individuals

a

c c t

a

C

a

tt

tg

gg ta

tg ta

g

gatcacgag

95% of these differences have no phenotypic effects

Influenced just by demography

Useful to infer human origins and migrations

🎐 🎽 🥎

tto

tta

aggaaattcccttctatttctagtttgttgagattttttaattcatgtgattgcgctatctggctttgctctca

Forces shaping genetic diversity

1st angle : Influence of human demography on genome diversity

Model : sequencing of non-coding regions of the genome (autosomal, Y-chromosome, mtDNA, etc.) and comparison of observed data with simulated data (Coalescence, ABC)

Objectives:

- better understand the demographic history of human populations using a multi-locus approach and a robust statistical framework

- determine the most likely model of human demography in order to « calibrate » the effects of demography on human genome variability and therefore, detect the effects of natural selection robustly.

2nd angle : Influence of lifestyle on genome diversity

Model : comparison of genetic diversity in populations presenting completely different lifestyles: Pygmy <u>hunter-gatherers</u> and Bantu <u>farmers</u>

Objectives:

- determine the demographic history of these populations and their genetic interactions
- better understand how lifestyle and modes of subsistence have influenced population genetic diversity

3rd angle : Influence of natural selection on genome diversity

General: the detection of natural selection at the genome-wide level

Model : different families of innate immunity receptors (TLRs, Nod-like, RIG-I like, type-C lectins) and their signaling pathways

Objectives:

- identify regions of the human genome having participated in our adaptation to the environment (climatic, nutritional, pathogenic)

- In the context of immunity, distinguish those genes having played a major role in human survival from those playing a more redundant role in host defense against pathogens

Examples

- Demographic Inference

- Worldwide inference of past demographic events
- History, population history and lifestyle

– Selective Inference

- Genomewide detection of natural selection
- Natural selection and immunity to infection

Examples

- Demographic Inference

- Worldwide inference of past demographic events
- History, population history and lifestyle

- Selective Inference
 - Genomewide detection of natural selection
 - Natural selection and immunity to infection

Population history and genetic diversity

Questions

- When humans left Africa?
- How was the intensity of the bottleneck out of Africa?
- How intense have been the population expansions of modern humans?
- When the ancestors of contemporary Europeans and Asians started to diverge?

Demographic inference: non-coding regions of the genome

213 individuals from Africa Europe east-Asia

Total sequence per individuals of ~27 kb of diploid

A best-fit model for the historical and demographic history

Model and parameter best-fitted estimations.

Laval et al. PLoS One 2010

Estimation of historical and demographic parameters

Α

С

Laval et al. PLoS One 2010

Examples

- Demographic Inference

- Worldwide inference of past demographic events
- History, population history and lifestyle

- Selective Inference
 - Genomewide detection of natural selection
 - Natural selection and immunity to infection

Our model: Pygmy hunter-gatherers and Bantu farmers

Our model: Pygmy hunter-gatherers and Bantu farmers

Population collection

Ру	118	
1.	Bakola (Cameroon)	16
2.	Baka (Cameroon)	15
3.	Baka (Gabon)	16
4.	Biaka (RCA)	24
5.	Mbuti (RDC)	24
6.	Twa (Rwanda north)	15
7.	Twa (Rwanda south)	8
Fa	118	

8.	Yoruba (Nigeria)	31
9.	Akele (Gabon)	16

- 10. Ngumba (Cameroon) 16
- 11. Chagga (Tanzania) 32 23
- 12. Mozambicans

Population structure

Our model: Pygmy hunter-gatherers and Bantu farmers

1. When AGR, WPYG and EPYG diverged ?

- Have the pygmy traits originated (\rightarrow) only once or do they have appeared independently (convergent evolution)??

- Has the transition to agriculture involved the divergence between PYG and AGR ?

Demographic regimes of each population groups

- Farmer populations have experienced population expansions
- Both Western and Eastern Pygmies have undergone reductions in population size (bottlenecks followed by recovery)

A best-fit model for the demographic history of PYG and AGR

Patin et al. PLoS Genetics 2009

Implications for the history of hunter-gatheres and farmers in Africa

Examples

Demographic Inference

- Worldwide inference of past demographic events
- History, population history and lifestyle

– Selective Inference

- Genomewide detection of natural selection
- Natural selection and immunity to infection

Migration, adaptation and natural selection

Genetic variants conferring an advantage to better adaptation will be selected

Different types of natural selection

PURIFYING/NEGATIVE SELECTION

Ex. many human genes

POSITIVE SELECTION

Ex. G6PD, CD40 protection against malaria in Africa

BALANCING SELECTION

Ex. MHC worldwide, HbS in Africa (malaria)

Deleterious mutation

Neutral mutation

Selection at the Genome-wide Level?

- To which extent has natural selection influenced, at the scale of the entire genome, the degree of population differentiation in modern humans?
- Which type of genetic variants have been preferentially targeted by selection?
- Genes and gene variants under strong selective pressures can highlight regions of the genome explaining the current population phenotypic variation

Levels of population differentiation under neutrality

Positive selection increase population differentiation

Present

F_{ST} estimation of 2.8 million HapMap SNPs

Conservative list of targets of positive selection Extended list of 585 genes

Phenotype category	Genes under strong positive selection
Morphological traits (skin pigmentation, hair development, etc.)	ABCC11, EDAR, MATP, PKP1, PLEKHA4, SLC24A5
Immune response to pathogens	CEACAM1, CR1, DUOX2, VAV2
DNA repair and replication	MPG, POLG2, TDP1
Sensory functions (olfaction, eye development)	COL18A1, OR52K2, RP1L1
Insulin regulation, metabolic syndrome (obesity, diabetes, hypertension)	ALMS1, CEACAM1, ENPP1
Various metabolic pathways (ethanol, intestinal zinc, citrulline)	ADH1B, ASS, SLC39A4
Miscellaneous	SPAG6, FBX031, RTTN
Unknown	ABCC12, ADAT1, AK127117, C17orf46, C8orf14, COLEC11, CPSF3L,
	DNAJC5B, DNHD1, ETFDH, EXOC5, FAIM, FLJ37464, FXR1, GCN5L2,
	KIAA0984, LAMB4, LOC648511, MGC72127, PCGF1 ¹ , PLEKHG4, POL3S ² ,
	RNF135, SLC30A9, SYTL3, TEX15, TTC31 ¹ , FLJ14397 ¹ , VPS33B, ZNF646 ²

Natural selection and disease

Non-synonymous variants that are highly differentiated among populations are more represented among genes known to be involved in human disease

Infectious diseases have been a major force driving the evolution of our genomes

Whole genome approaches (GWSS)

Immunity-related genes are over-represented when restricting the analyses to more recent selective events (< 30,000 years)

Barreiro & Quintana-Murci Nat Rev Genet 2009

The human Toll-like receptors

- Determine whether and how natural selection has acted upon the individual TLR members

- Sequence of the ten TLRs in a multi-ethnic panel of individuals worldwide

The effects of purifying selection on TLRs

Functional diversity at the individual TLR level

The high frequencies of damaging and nonsense mutations in "non viral" TLRs illustrate their greater redundant role in protective immunity

Conclusions

- TLRs sensing virus are under strong purifying selection, indicating strong evolutionary constraints
- Virus have exerted strong selective pressures than bacteria and parasites on the TLR system
- Non-viral TLRs are more "dispensable" in host defense
- Some of them, TLR5, are completely redundant in host defense

Some ongoing research

• Genome-wide:

- Demographic inferences using genomewide data and complete human genome sequences
- Detection of the (difficult) signatures of balancing selection
- Immunity and infectious disease:
 - The Nod-like receptor family
 - RIG-I like receptor family
 - The C-type lectin family
 - The IFN gene family

People involved in these projects, collaborations, funding

Lluis Quintana-Murci

Guillaume Laval

Helene Quach

Luis Barreiro

Etienne Patin

Meriem Ben Ali

National Collaborations

Evelyne Heyer Alain Froment **Olivier Neyrolles** J-M Hombert JL Casanova Laurent Abel François Renaud Antoine Gessain

MNHN, Paris MNHN, Paris Toulouse ISH, Lyon Necker, Paris Necker, Paris IRD, Montpellier Pasteur

Ken Kidd Chris Tyler-Smith **Rosalind Harding** Pardis Sabeti Doron Behar Antti Sajantila Eileen van Helden

International Collaborations Yale Univ, USA Sanger Center, UK Oxford Univ, UK MIT, USA Technion, Israel Helsinki, Finland Stellenbosch, SA