

IMGT/3Dstructure-DB and tools for immunoglobulins (IG) or antibodies, T cell receptors (TR), MHC, IgSF and MhcSF structural data

François Ehrenmann Tuesday, September 7, 2010

http://www.imgt.org

Data origin and Scientific Chart

3D structures database (IG, TR, MHC, IgSF and MhcSF)

Card

IMG	T/3Dstructur	e-DB ca	ard for: 1	n0	x	R	3				Entry code Search	
IMGT molec	ule name		IMGT receptor t	ype	IMGT receptor des	scription	Ligand(s)	Species		СС	Chain ID	
h10 noutralizi	ing mAb anti gn10	0 [LIIV 4]	IG		FAB-GAMMA-1_K	APPA		Homo sapier	ns (Human)	1	[<u>1n0x H</u> <u>1n0x L</u>]	
DIZ NEUtralizi	ing mab, anti-gp12	0 [[[]]	IG		FAB-GAMMA-1_K	APPA		Homo sapier	os (Human)	2	[1n0x K 1n0x M]	
					Protein		P2.1 peptide	Synthetic (Sy	/nthetic)	2	[<u>1n0x R</u>]	
					Protein		BZ. I peptide	Synthetic (Sy	/nthetic)	1	[<u>1n0x P</u>]	
Experimental t	technique X-ray diffi	raction	Resolution (in ang	strom) 1.80 PDB re	elease date	13-APR-04					
Chain details	Contac analysi	t s	Paratope and epitope	3D Jmo) visualization bl or QuickPDB	Renumbere MGT file	ed IMG	iT numbering parison 🗖	Reference and link	es s	Printable card	
For the IMGT Re Differences wit Chain details	esidue@Position card th the closest IMGT al s of b12 neutralizin	d of a given re l <mark>lele sequenc</mark> g mAb, anti	esidue, click on its lett ce are in orange. I-gp120 [HIV-1], IG	erina , FAB	a sequence. 9-GAMMA-1_KAPPA h	lomo sapiel	ns (Human) [1n0x_H,1n0x_L]				
Chain ID	1n0x_H											
Chain length	230											
IMGT chain	VH-CH1											
description	= VH (1-127) [D1] + C	H1 (128-219	9) [D2]									
Chain sequence	<pre></pre>											
	Sequence in FASTA	format Seq	uence in IMGT forma									
	IMGT domain description	VH (1-127) [D1]									
	IMGT gene and allele name	IGHV1-3*01	(79.60%)(Human) <u>Al</u>	ignme	ent details							
	IMGT gene and allele name	IGHJ6*03 (9	3.80%)(Human) <u>Aligr</u>	iment	<u>details</u>							
	2D representation	IMGT Collier	de Perles or IMGT C	ollier	de Perles on 2 layers							

IMGT/3Dstructure-DB

provides the closest genes and alleles that are expressed in the amino acid sequences of the 3D structures, by aligning these sequences with the IMGT domain reference directory.

- Chain and domain details
- Contact analysis
- Paratope and epitope
- 3D visualization
- Renumbered files
- Numbering comparison
- References and links

IMGT Colliers de Perles

2D representations of V, C and G domains based on the **IMGT unique numbering**

- delimitation of the framework (**FR-IMGT**) and complementarity determining region (**CDR-IMGT**) is standardized

- **CDR-IMGT lengths** are crucial information which characterize variable regions

- conserved AA (and codons) are always at the **same positions**:

- 23 1st-CYS
- 41 CONSERVED-TRP
- 89 hydrophobic
- 104 2nd-CYS
- 118 J-PHE, J-TRP

IGHV, VH domain, one layer CDR-IMGT lengths [8.8.13]

Contact analysis and IMGT Colliers de Perles

List	List of the Residue@Position pair contacts: Domain pair contacts Click 'R@P' for IMGT Residue@Position cards											ts		
Cilc	Order			Residue	e@F0Siti	on care	Order						Ato	m contacts
	IMGT Num	Resid	ue	Domain	Chain		IMGT Num	Resid	lue	Domain	Chain	Total	Polar	Hydrogen
<u>R@P</u>	38	TYR	Y	VH	1ce1_H	<u>R@P</u>	2	THR	Т		1ce1_P	4	0	0
<u>R@P</u>	38	TYR	Y	VH	1ce1_H	<u>R@P</u>	7	ALA	А		1ce1_P	13	1	0
<u>R@P</u>	38	TYR	Y	VH	1ce1_H	<u>R@P</u>	8	ASP	D		1ce1_P	14	2	2
<u>R@P</u>	55	PHE	F	VH	1ce1_H	<u>R@P</u>	6	SER	S		1ce1_P	5	0	0
<u>R@P</u>	55	PHE	F	VH	1ce1_H	<u>R@P</u>	7	ALA	А		1ce1_P	16	0	0
<u>R@P</u>	55	PHE	F	VH	1ce1_H	<u>R@P</u>	8	ASP	D		1ce1_P	1	0	0
<u>R@P</u>	57	ARG	R	VH	1ce1_H	<u>R@P</u>	7	ALA	А		1ce1_P	9	3	2
<u>R@P</u>	57	ARG	R	VH	1ce1_H	<u>R@P</u>	8	ASP	D		1ce1_P	20	6	1
<u>R@P</u>	61	LYS	ĸ	VH	1ce1_H	<u>R@P</u>	8	ASP	D		1ce1_P	11	2	1
<u>R@P</u>	66	GLU	Е	VH	1ce1_H	<u>R@P</u>	7	ALA	А		1ce1_P	1	0	0
<u>R@P</u>	107	GLU	Е	VH	1ce1_H	<u>R@P</u>	2	THR	т		1ce1_P	13	2	1
<u>R@P</u>	107	GLU	Е	VH	1ce1_H	<u>R@P</u>	4	SER	s		1ce1_P	5	2	0
<u>R@P</u>	107	GLU	Е	VH	1ce1_H	<u>R@P</u>	7	ALA	А		1ce1_P	5	0	0
<u>R@P</u>	108	GLY	G	VH	1ce1_H	<u>R@P</u>	1	GLY	G		1ce1_P	2	1	0
R@P	108	GLY	G	VH	1ce1_H	<u>R@P</u>	2	THR	т		1ce1_P	9	2	0
<u>R@P</u>	109	HIS	н	VH	1ce1_H	<u>R@P</u>	1	GLY	G		1ce1_P	24	4	0
<u>R@P</u>	109	HIS	н	VH	1ce1_H	<u>R@P</u>	2	THR	т		1ce1_P	21	5	0
<u>R@P</u>	109	HIS	н	VH	1ce1_H	<u>R@P</u>	3	SER	s		1ce1_P	9	2	1
<u>R@P</u>	110	THR	т	VH	1ce1_H	<u>R@P</u>	1	GLY	G		1ce1_P	1	1	0
<u>R@P</u>	110	THR	т	VH	1ce1_H	<u>R@P</u>	3	SER	S		1ce1_P	11	4	1
<u>R@P</u>	112	ALA	А	VH	1ce1_H	<u>R@P</u>	3	SER	S		1ce1_P	3	1	0
<u>R@P</u>	113	ALA	А	VH	1ce1_H	<u>R@P</u>	2	THR	Т		1ce1_P	3	0	0
<u>R@P</u>	113	ALA	А	VH	1ce1_H	<u>R@P</u>	3	SER	s		1ce1_P	7	2	0
<u>R@P</u>	113	ALA	А	VH	1ce1_H	<u>R@P</u>	4	SER	s		1ce1_P	4	0	0
<u>R@P</u>	114	PRO	Ρ	VH	1ce1_H	<u>R@P</u>	4	SER	S		1ce1_P	5	0	0

amain nair aantaata

IGHV, VH domain, two layers with Hydrogen bonds CDR-IMGT lengths [8.8.13]

IMGT/Collier-de-Perles

2D graphical representations of protein domains

 Domain type Number of layers CDR-IMGT color type Background color Domain sequence 	Variable (V) 1 1 1 1 (RPI,IGH,TRB,TRD) 50% Hydrophobic positions QVTLKESGP.GILQPSQTLSLTCSFSGFSLSTYGMGVGWIRQPSGKGLEWLAH IWWDDVKRYNPALK.SRLTISKDTSGSQVFLKIASVDTSDTATYYCARMGSD YDVWFDYWGOGTLVTVSA	IMGT/Collier-de-Perles tool: • provides 2D representations of V, C and G type domains • can be customized - to display CDR-IMGT according to the IMGT Color menu - to visualize the amino acids according to their hydropathy, volume or IMGT physicochemical classes
 Amino acid insertions CDR3-IMGT length Your domain title 	Position Length Numbering labels Image: Draw! ADD	
	$10 \bigcirc E \bigcirc V \bigcirc C \land C \land A = B \land C \downarrow C \land A = B \land$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

IMGT/DomainGapAlign

Amino acid sequences analysis per domain

Paste your protein sequence(s) in <u>FASTA format</u> below >alemtuzumab_VH QVQLQESGPGLVRPSQTLSLTCTVSGFTFTDFYMNWVRQPPGRGLEWIGFIRDKAKGYTTEY HTAAPFDYWGQGSLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS NVNHKPSNTKVDKKVE	NPSVKGRVTMLVDTSKNQFSLRLSSVTAADTAVYYCAREG GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC Sequence name: <u>alemtuzumab</u>	 For an antibody V domain sequence, IMGT/DomainGapAlign: identifies the closest V domain creates gaps according to the IMGT unique numbering delimits FR- and CDR-IMGT highlights differences with the closest reference
Ø Sequence names must be different !		
Upload a file	Move your mouse over the amino acids below the alignment for the	e characterization of AA changes
Select a domain type	Closest reference gene and allele(s) from the IMG	T V domain directory: <i>Homo sapiens</i> (Human)
Select a species All species	V gene and allele Species Domain IGHV4-59*01 Homo sapiens 1	Smith-Waterman Score V-REGION percentage of identity Overlap Align your sequence with 494 73.0 100 Image: Content of the second
Displayed alignments Display IMGT Colliers de Perles Align and IMGT-gap my sequence(s)	J gene and allele Species Domain IGHJ4*01 Homo sapiens 1 IGHJ4*02 Homo sapiens 1 IGHJ4*03 Homo sapiens 1	Smith-Waterman Score J-REGION percentage of identity Overlap 94 92.9 14 94 92.9 14 94 92.9 14
	 Alignment with the closest gene and allele from the FR1-IMGT (1-26) A B (1-15) A (1-26) A (1-15) A (1-15)	ne IMGT V domain directory: Homo sapiens (Human) DR1-IMGT FR2-IMGT CDR2-IMGT FR3-IMGT CDR3-IMGT FR4-IMGT (27-38) (39-55) (56-65) (66-104) (105-117) (118-128) BC C C' C'C' C'' D E F FG G (27-38) (39-46) (47-55) (56-65) (66-74) (75-84) (85-96) (97-104) (105-117) (118-128) 38 3941 46 47 55 56 65 66 74 75 80 84 89 96 97 104 105 1112 118 128

IMGT/DomainGapAlign

Towards «Potential immunogenicity evaluation»

Comparison with the statistical profiles of the human expressed repertoires is useful to identify potential immunogenic residues at given positions in chimeric or humanized antibodies or to evaluate immunogenicity of primate antibodies.

Collier de Perles on one layer

Conclusion

- IMGT/3Dstructure-DB, IMGT Colliers de Perles and the IMGT/DomainGapAlign tool
- 1. are widely used by researchers, particularly for antibody engineering and humanization design
- 2. allow to precisely define and to easily compare amino acid sequences of the FR and CDR-IMGT
- 3. facilitate the identification of potential immunogenic residues at given positions in chimeric or humanized antibodies.
- 4. Therapeutic applications emphasize the importance of the IMGT/3Dstructure-DB standardized approach that bridges the gap between sequences and 3D structures whatever the species.

THANKS FOR YOUR ATTENTION

And thanks to IMGT Team !

Poster n° 9: IMGT/3Dstructure-DB and tools for immunoglobulins (IG) or antibodies, T cell receptors (TR), MHC, IgSF and MhcSF structural data

					C				
					<u> </u>	ard			
IMC	GT/3Dstructu	re-DB c	ard for: 1n	0x 🕺	61		Entry code Search	IMGT/3Dstructure-DB	
MGT mole	cule name		IMGT receptor type	e IMGT receptor description	n Ligand(s)	Species	CC Chain ID	provides the closest ge	ile
2 neutrali	zing mAb anti-gn1	0 [11]/-11	IG	FAB-GAMMA-1_KAPPA		Homo sapiens (Human)	1 [1n0x H 1n0x L]	and alleles that	ar
- nouu diiz	and an and a second pro-	.5 (mv-1)	IG	FAB-GAMMA-1_KAPPA		Homo sapiens (Human)	2 [1n0x K 1n0x M]		
				Protein	B2.1 peptide	Synthetic (Synthetic)	2 [1n0x R]	expressed in the amino a	Cic
				FIOLEIII		Synuleuc (Synuleuc)		sequences of the	3
	anaiys	15	epitope J	mol or QuickPDB IMGT file	com	parison 🗟 and links	card	sequences with the IN	IG1
Chain de or the IMGT F ifferences w Chain detai	atails Residue@Position car ith the closest IMGT a Its of b12 neutralize	d of a given r liele sequen ng mAb, ant	epitope J esidue, click on its letter li ce are in orange. 4-gp 120 [HIV-1], KG, F,	n a sequence. AB-GAMMA-1_KAPPA Homo sa	Diens (Human) [*	parison and links	card	sequences with the IN domain reference director	IGT y.
Chain de or the IMGT F fferences w Chain detai Chain ID Chain ID	etails Residue@Position.car ith the closest IMGT a Is of b12 neutralizin 1n0x_H 230	d of a given r liele sequen ng mAb, ant	epitope Ji esidue, click on its letter in cce are in orange. 1-gp120 [HIV-1], 1G, F	n a sequence. AB-GAMMA-1_KAPPA Homo sa	biens (Human) [1	nov_H, 1nov_L]	card	sequences with the IN domain reference director • Chain and domain deta	IG1 y. ıils
Chain de or the IMGT F fferences w Chain detai Chain ID Chain length MGT chain Jescription	etails Residue@Position car ith the closest IMGT a ls of b12 neutralizin 1n0x_H 230 VH-CH1 = VH (1-127) [D1] + 1	d of a given r liele sequen ng mAb, ant CH1 (128-211	epitope 3 esidue, click on its letter li ce are in orange. 1-gp 120 [HIV-1], IG, F	mol or QuickPDB IMGT file n a sequence. AB-GAMMA-1_KAPPA Home se	bal com	nov_H, 1nov_L	card	sequences with the IN domain reference director • Chain and domain deta • Contact analysis	IG1 y. 1ils
Chain de or the IMGT F Ifferences w Chain detail Chain ID Chain length MGT chain description	analysis stails teadlocg/location care the closest MGT as 100x_H 230 VH-CH1 VH-CH1 VL-CH1 VL-CH1 </td <td>d of a given r liefe sequen ig mAb, ant SVKVSC(ASC REGIO J SPQ(NY/HOV TVPSSSLGT(</td> <td>epitope (A) esidue, click on its letter in ce are in orange. (Hiv-1), Io, If H-gp 120 [Hiv-1], Io, If (Hiv-1), Io, If (H) [D2] (Hiv-1), If (Hiv-1), If (Hiv-1), If</td> <td>mol or QuickPDB INGST file n a sequence. AB-GAMMA-1_KAPPA Homo so 1-127) [D1] AMAGINE*NIGNEESAKEQCENTETAL EPGLAPSSK5756GTAALGQLVKDYFPEI EPKSC</td> <td>tsah/TAYMELRSLR CH2 (128-21 VTVSWNSGALTSOV</td> <td>sep sep sep sep sep sep sep sep</td> <td>card</td> <th>sequences with the IN domain reference director • Chain and domain deta • Contact analysis • Paratope and epitope • 3D visualization</th> <td>IGT y. ails</td>	d of a given r liefe sequen ig mAb, ant SVKVSC(ASC REGIO J SPQ(NY/HOV TVPSSSLGT(epitope (A) esidue, click on its letter in ce are in orange. (Hiv-1), Io, If H-gp 120 [Hiv-1], Io, If (Hiv-1), Io, If (H) [D2] (Hiv-1), If (Hiv-1), If (Hiv-1), If	mol or QuickPDB INGST file n a sequence. AB-GAMMA-1_KAPPA Homo so 1-127) [D1] AMAGINE*NIGNEESAKEQCENTETAL EPGLAPSSK5756GTAALGQLVKDYFPEI EPKSC	tsah/TAYMELRSLR CH2 (128-21 VTVSWNSGALTSOV	sep sep sep sep sep sep sep sep	card	sequences with the IN domain reference director • Chain and domain deta • Contact analysis • Paratope and epitope • 3D visualization	IGT y. ails
Chain de orthe IMGT R fferences w Chain detai Chain ID Chain length MGT chain Jescription	entarys stalls testide@Position.car testi	d of a given ri liele sequen ig mAb, ant SVKVSC(ASC REGIO] J SPQDMYHDV TVPSSSLGTC <i>format</i> Sec VH (1-127))	epitope 3 esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its lefter life esidue, click on its life esidue, click	mol or QuickPDB IMGT file n a sequence. AB-GAMMA-1_KAPPA / Komo so 1-127) [D1] WHXMLNFYNGNCEFSAKPQCRVTFT4 PPLAPSSK5756GTAALQL VKOYFPEI EPKSC	iai com	skD skD skD skD skD skD skD skD	card	sequences with the IN domain reference director • Chain and domain deta • Contact analysis • Paratope and epitope • 3D visualization • Renumbered files	IGT y. ails
Chain de or the IMGT F Ifferences w Chain detai Chain ID Chain length MGT chain description	actions stails Accidance (I) occurs (I) MCG Taillon Cast (II) of b12 neutralized 100x_H 230 VVH-CH1 VVH-CH1 (VG) VGSGEVKGCG_ N=NAD-D- TAWYGSGEVKGCG/ N=NAD-D- TAWYGSGEVGCG/ N=NAD-D- TAWYGSGEVGCG/ Sequence in ASAT MGT domain description MGT domain description	d of a given ri liele sequen ig mAb, ant cH1 (128-211 svkvsc()Asc regoto J sector J sector J tvPsssLgTQ <i>Learnat</i> <u>Sec</u> VH (1-127) IGHV1-3*01	epitope 3. esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li escl	mol or QuickPDB INGT file a sequence. AB-GAMMA-1_KAPPA //romo so 1-127) [D1] BWGRUK-ESJIKFQCRVTFTA BWGRVTFTA B	Iai com	sa)	card	sequences with the IN domain reference director • Chain and domain deta • Contact analysis • Paratope and epitope • 3D visualization • Renumbered files • Numbering compariso	IG1 y. ails
Chain de or the IMGT F Ifferences w Chain detai Chain lo Chain length IMGT chain description	attigs stalls Keidus () Robert Morta Is of b12 neutralizit 100x, H 330 VH-CH1 Sequence In CAST Sequence In FAST MGT gene and allele name	d of a given r liele sequen ng mAb, ant CH1 (128-211 SVKVSC(ASG SRGDI) J SRGDI TVPSSLGTQ Lormat Sec VH (1-127) IGHV1-3*01 IGHJ6*03 (5	epitope 3. esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li esclue, click on its letter li escl	mol or QuickPDB INGT file a sequence. AB-GAMMA-1_KAPPA //remo so 1-127) [D1] BWGRUNCHCESJIKFQCRVTFTA BWGRUNCHCESJIFTA BWGRUNCH	lad com	sap	card	sequences with the IN domain reference director • Chain and domain deta • Contact analysis • Paratope and epitope • 3D visualization • Renumbered files • Numbering comparisoo • References and links ³	IGT y. ails n

	IN Amino	IGT/Don acid sequend	nainGa ces analysi	pAlign	ain	
Paste your protein sequence(s) >alentuzumab. VH qvol.etsGordi.VRPSOTLSLTCTVSG HTAVEPDYMGSUTVSSASTKOPSI WMHKPSMTKVDKKVE	In <u>FASTA format</u> bolow TFTDYMMNROPORGLEWLGFIRDKXKOYTTEYN FPLAPSSKSTSGGTAALGCLWDYFPEPVTVSMISC	PSVKGRVTMLVDTSKNPFSLRLSSVTAADTAVYYCA ALTSGWHTFPAVLQSSGLYSLSSVVTVPSSSLGTQT	For an ant • identifies • creates c • delimits • highlight	ibody V domain s s the closest V do gaps according to FR- and CDR-IMG ts differences with	Gequence, IMGT/Do omain o the IMGT unique i ST h the closest refere	mainGapAligr numbering ence
Sequence names must be diffe Upload a file Select a domain type V Select a species All s Displayed alignments 1	rent l Parcourir Peset pecies Perese Pere	Sequence name: alemitzzumab Sequence name: alemitzzumab Conset reference gene and allele (s) from V gene and allele Spacke IGH2407 I Herno sapiens IGH2402 Herno sapiens IGH2403 I Herno sapiens IGH2403 I Herno sapiens IGH2403 I Herno sapiens I I I I I I I I I I I I I I I I I I I	ment for the characteritation of AA charages the IMGT V domain directory: Ho Domain Smith-Waterman Score 1 494 Domain Smith-Waterman Score 1 04 1 04	wmo septens (Human) V-REGION percentage of identity 73.0 J-MECION percentage of identity 92.9	V Overlap Align your sequence with 100 V Overlap 14 14 14	h
		Alignment with the closest gene and alied R1:2NGT	e from the WAGT V domain directs (013-2007 F12-219 (023) (027-03) (027-04) (027-03) (027-03) (027-04) (027-03) (027-03) (027-04) (027-03) (027-03) (027-04) (027-04) (027-04) (027-04) (027-04) (027-04) (027-04) (027-04) (027-04) (027-04) (027-04) (027-04) (027-04) (027-04)	ary: Home septem: (Human) NT C002-199T (56-65) (57-55) (56-65) (66-74) (17) (55) 55 65 66 74 (17) (55) 55 65 66 74 (17) (55) 55 65 66 74 (17) (61) 1 (15,51) NIMBALLS, BY (17) <th>FK3-DNGT 0 6 10 F 0 6 6 6 7 10 10 5 80 84 80 96 77 104 10 1</th> <th>2003-1104T FN4-2007 105-117) (118-120) 106-117) (118-120) 108-117) (118-120) 108-117) (118-120) 108-117) 118 120 FP WebGUVTSS P J HOLDON 10814-01</th>	FK3-DNGT 0 6 10 F 0 6 6 6 7 10 10 5 80 84 80 96 77 104 10 1	2003-1104T FN4-2007 105-117) (118-120) 106-117) (118-120) 108-117) (118-120) 108-117) (118-120) 108-117) 118 120 FP WebGUVTSS P J HOLDON 10814-01

IMGT/DomainGapAlign Towards «Potential immunogenicity evaluation»

Comparison with the statistical profiles of the human expressed repertoires is useful to identify potential immunogenic residues at given positions in chimeric or humanized antibodies or to evaluate immunogenicity of primate antibodies.

Conclusion

IMGT/3Dstructure-DB, IMGT Colliers de Perles and the IMGT/DomainGapAlign tool

- 1. are widely used by researchers, particularly for antibody engineering and humanization design
- 2. allow to precisely define and to easily compare amino acid sequences of the FR and CDR-IMGT
- 3. facilitate the identification of potential immunogenic residues at given positions in chimeric or humanized antibodies.
- 4. Therapeutic applications emphasize the importance of the IMGT/3Dstructure-DB standardized approach that bridges the gap between sequences and 3D structures whatever the species.

9

