MetaBoFlux

A method to analyse flux distributions in metabolic networks

Amine Ghozlane, Frédéric Bringaud, Fabien Jourdan and Patricia Thébault

LaBRI, Université Bordeaux I CBiB, Université Bordeaux II France

September 7, 2010

MetaBoFlux : Principle and method

MetaBoFlux : Principle and method

Flux prediction :

MetaBoFlux : Principle and method

MetaBoFlux : Principle and method

 $\mathsf{Flux} \ \mathsf{prediction} \ :$

- To integrate experimental data :
 - Structure of the network
 - Proteomics (fluxes, ratio)
 - Metabolomics data (metabolite concentration)

MetaBoFlux : Principle and method

MetaBoFlux : Principle and method

 $\mathsf{Flux}\ \mathsf{prediction}\ :$

- To integrate experimental data :
 - Structure of the network
 - Proteomics (fluxes, ratio)
 - Metabolomics data (metabolite concentration)
- Ombined system of a metabolic network simulator with a parallel-heuristic algorithm

MetaBoFlux : Principle and method

MetaBoFlux : Principle and method

 $\mathsf{Flux}\ \mathsf{prediction}\ :$

- To integrate experimental data :
 - Structure of the network
 - Proteomics (fluxes, ratio)
 - Metabolomics data (metabolite concentration)
- Ombined system of a metabolic network simulator with a parallel-heuristic algorithm
- O To confront dynamic behaviors to all available experimental data

MetaBoFlux : Principle and method

MetaBoFlux : Principle and method

Flux prediction :

- To integrate experimental data :
 - Structure of the network
 - Proteomics (fluxes, ratio)
 - Metabolomics data (metabolite concentration)
- Ombined system of a metabolic network simulator with a parallel-heuristic algorithm
- **③** To confront dynamic behaviors to all available experimental data
- To predict the flux distribution
 - To obtain models of metabolic networks validated by experiments More information : Poster 10

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

- Glucose metabolism
 - Three compartments : Glycosome Cytosol Mitochondrion

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

- Glucose metabolism
 - Three compartments : Glycosome Cytosol Mitochondrion
 - Model proposed by [Bringaud et al., 2006]

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

- Glucose metabolism
 - Three compartments : Glycosome Cytosol Mitochondrion
 - Model proposed by [Bringaud et al., 2006]
 - No information on flux distributions and compliance to the constraints

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

- Literature :
 - Maintenance ATP/ADP and NADH/NAD+ balance inside the glycosome

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

Application to Trypanosoma brucei

• Literature :

- Maintenance ATP/ADP and NADH/NAD+ balance inside the glycosome
- Proportions of final products [Coustou et al., 2006]

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

- Literature :
 - Maintenance ATP/ADP and NADH/NAD+ balance inside the glycosome
 - Proportions of final products [Coustou et al., 2006]
 - Flux of malic enzymes equal to the flux of pyruvate kinase and pyruvate phosphate dikinase [Preliminary data]

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

Application to Trypanosoma brucei

Literature :

- Maintenance ATP/ADP and NADH/NAD+ balance inside the glycosome
- Proportions of final products [Coustou et al., 2006]
- Flux of malic enzymes equal to the flux of pyruvate kinase and pyruvate phosphate dikinase [Preliminary data]
- Model validation and flux flexibility analysis

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

Metaboflux : Model validation

• Balance scale of ATP/ADP and NADH/NAD⁺

Final product proportions

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

Metaboflux : Model validation

• Balance scale of ATP/ADP and NADH/NAD+

• Final product proportions

Two explanations :

- Bad topology
- Inconvenient constraints

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

Metaboflux : Flux flexibility analysis

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

Metaboflux : Flux flexibility analysis

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

Metaboflux : Flux flexibility analysis

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

Metaboflux : Flux flexibility analysis

Trypanosoma brucei Metaboflux : Model validation Metaboflux : Flux flexibility analysis

Metaboflux : Flux flexibility analysis

Outcomes Acknowledgments

Conclusion - Perspective

Metaboflux

Outcomes Acknowledgments

Conclusion - Perspective

- Metaboflux
 - New tool for model validation and flux analysis
 - Standalone application under GPL licence

Download : www.cbib.u-bordeaux2.fr/metaboflux (soon available)

Outcomes Acknowledgments

Conclusion - Perspective

- Metaboflux
 - New tool for model validation and flux analysis
 - Standalone application under GPL licence
- Trypanosoma brucei
 - No relevant malic enzymes constraint
 - Biological model compatible with other constraints
 - Flexibility consistent with experimental data
 - Further analysis on the flexibility will be proceed and validated by experiments

Download :

www.cbib.u-bordeaux2.fr/metaboflux (soon available)

Outcomes Acknowledgments

Acknowledgments

Teachers :

- Dr. Patricia Thébault, Bordeaux University
- Pr. Frédéric Bringaud, CNRS
- Dr. Fabien Jourdan, INRA

Contributors :

- Laurent Gil
- Daniel Jacob

And :

• Dr. Claire Lemaitre LaBRI, CBiB Metabotryp ANR

Outcomes Acknowledgments

Thanks !

Extended Flux Balance Analysis Optimization process Application Quality checking Bibliography

Extended Flux Balance Analysis

Extended FBA are dedicated to specific applications :

- Energy balance analysis (EBA) eliminates thermodynamically wrong solutions [Beard et al., 2002]
- rFBA implements regulatory constraints

Extended Flux Balance Analysis Optimization process Application Quality checking Bibliography

Extended Flux Balance Analysis

Extended FBA are dedicated to specific applications :

- Energy balance analysis (EBA) eliminates thermodynamically wrong solutions [Beard et al., 2002]
- rFBA implements regulatory constraints
- Distance minimization in flux space (MOMA [Segr et al., 2002] , ROOM [Shlomi et al., 2005])
 - Search flux distributions for a mutant that imitate a wild type

Extended Flux Balance Analysis Optimization process Application Quality checking Bibliography

Extended Flux Balance Analysis

Extended FBA are dedicated to specific applications :

- Energy balance analysis (EBA) eliminates thermodynamically wrong solutions [Beard et al., 2002]
- rFBA implements regulatory constraints
- Distance minimization in flux space (MOMA [Segr et al., 2002] , ROOM [Shlomi et al., 2005])
 - Search flux distributions for a mutant that imitate a wild type

Limited Validation :

- Structure of the metabolic network
- Limited for experimental data integration
- No validation or flux analysis from biological constraints

Extended Flux Balance Analys Optimization process Application Quality checking Bibliography

Non-linear optimization

Extended Flux Balance Analys Optimization process Application Quality checking Bibliography

Non-linear optimization

Extended Flux Balance Analysi Optimization process Application Quality checking Bibliography

Non-linear optimization

Extended Flux Balance Analys Optimization process Application Quality checking Bibliography

Non-linear optimization

To achieve the global optimum :

• Estimate the complexity of each metabolic network to set the right temperature (complex operation)

Extended Flux Balance Analys Optimization process Application Quality checking Bibliography

Non-linear optimization

To achieve the global optimum :

- Estimate the complexity of each metabolic network to set the right temperature (complex operation)
- Perform N-parallel simulated annealing
- Increase our chances to find a global optimum and good local minimum

Extended Flux Balance Analysis Optimization process Application Quality checking Bibliography

Extended Flux Balance Analysi Optimization process Application Quality checking Bibliography

Quality checking

Two ways to control the quality of results :

Simulation checking

- To check that the energy is well determined.
- If there is high variation, we should increase the number of simulation.

Extended Flux Balance Analys Optimization process Application Quality checking Bibliography

Quality checking

Two ways to control the quality of results :

- Simulation checking
- Optimization checking

Hi	stogram	s Log of be	est energies						
	Energy	AcetylCoa	Malatemito	Acetate	NADH	Succinate2	NADPH	NADPplus	Pyruvate
1	1.393	0	0	1280	2829	391	2122	1878	0
2	1.458	0	0	1340	2750	176	2106	1894	0
з	1.459	0	0	1146	2773	510	2029	1971	0
4	2.237	0	0	1747	3501	174	2167	1833	0

- To check if every metabolite is consumed.
- Maybe the constraints are too high ?

Extended Flux Balance Analysis Introduction Application Application Conclusion Quality checking Appendices Bibliography

Bibliography I

Beard, D. A., dan Liang, S., and Qian, H. (2002). Energy balance for analysis of complex metabolic networks. *Biophys J*, 83(1):79–86.

Bringaud, F., Rivire, L., and Coustou, V. (2006). Energy metabolism of trypanosomatids: adaptation to available carbon sources.

Mol Biochem Parasitol, 149(1):1–9.

Coustou, V., Biran, M., Besteiro, S., Rivire, L., Baltz, T., Franconi, J.-M., and Bringaud, F. (2006).

Fumarate is an essential intermediary metabolite produced by the procyclic trypanosoma brucei.

J Biol Chem, 281(37):26832-26846.

Introduction Extended Flux Balance Anal Application Application Application Conclusion Application Appendices Bibliography

Bibliography II

Oh, Y., Lee, D., Lee, S., and Park, S. (2009). Multiobjective flux balancing using the nise method for metabolic network analysis. <i>Biotechnology progress</i> , 25(4):999–1008.
Orth, J. D., Thiele, I., and Palsson, B (2010). What is flux balance analysis? <i>Nat Biotechnol</i> , 28(3):245–248.
Segr, D., Vitkup, D., and Church, G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. <i>Proc Natl Acad Sci U S A</i> , 99(23):15112–15117.
Shlomi, T., Berkman, O., and Ruppin, E. (2005). Regulatory on/off minimization of metabolic flux changes after genetic perturbations. <i>Proc Natl Acad Sci U S A</i> , 102(21):7695–7700.