Replication-associated mutational strand asymmetry in the human genome

<u>Chun-Long Chen</u>¹, Benjamin Audit², Lauranne Duquenne¹, Guillaume Guilbaud³, Aurélien Rappailles³, Yves d'Aubenton-Carafa¹, Olivier Hyrien³, Alain Arneodo², & Claude Thermes¹

- ¹ Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette
- ² Laboratoire Joliot Curie et Laboratoire de Physique, Ecole Normale Supérieure de Lyon
- ³ Ecole Normale Supérieure de Paris

07/09/10, Jobim 2010, Montpellier

INTRODUCTION

Prokaryotes: mutation rates differ between leading and lagging strands

Replication origin ⇒ upward jump in the skew profile

asymmetry of substitution rates between transcribed and non-transcribed strands

asymmetry of nucleotide composition

Transcription: G > C and T > A on the non-transcribed strand

Beletskii A. Biol.Chem, (1998) 379:549

Total skew = superposition of skews due to replication and transcription

Superposition of replication and transcription

Total skew = superposition of skews due to replication and transcription

S

length between 0.5-2 Mbp covering >1/3 of the genome

?

MODEL 1

N-PATTERN DUE TO TRANSCRIPTION

Transcription specifically organized

MODEL 1

N-PATTERN DUE TO TRANSCRIPTION

Transcription specifically organized

MODEL 2

N-PATTERN DUE TO REPLICATION

Replication specifically organized

Transcription specifically organized

Replication specifically organized

RESULTS

QUESTION 1:

Are the upward jumps associated with replication origins?

REPLICATION TIMING PROFILE

GERMLINE CELLS

Determination of a human replication timing profile

A. Rappailles, G. Guilbaud, O. Hyrien

Chen CL. et al. Genome Res. (2010) 20:447

Comparison of upward jumps with initiation zones

Upward jump positions correspond to replication initiation zones

Desprat R. et al. Genome Res. (2009) 19:2288

Chen CL. et al. *Genome Res*. (2010) 20:447 Hansen RS. et al. *PNAS*. (2010) 107:139 Desprat R. et al. *Genome Res*. (2009) 19:2288

Statistical evaluation : comparison with null distribution of simulation

Upward jumps are significantly associated with replication initiation zones

Replication starts from N domain borders and propagate to center in later S phase

QUESTION 2:

Is the "N" pattern of skew profile generated by asymmetric nucleotide substitution rates?

Computation of nucleotide substitution rates

Computation of nucleotide substitution rates

upper strand: $n(A \rightarrow G)$ \parallel lower strand: $n(T \rightarrow C)$

upper	strand:	n (<mark>A→G</mark>)	n(T→C)
		II	Ш
lower	strand:	n(T→C)	n (<mark>A→G</mark>)

Compare the same substitution rate on two strands

upper strand: $n(A \rightarrow G) \leftrightarrow n(T \rightarrow C)$

Compare the same substitution rate on two strands

Compare the complementary substitution rates on the same strand

Complementary substitution rates along N-domains

Complementary substitution rates along N-domains

Reproduces perfectly the "N" pattern of skew profile

Compute the predicted skew (S at equilibrium) along N-domain

Skew at equilibrium reproduces perfectly the "N" pattern of skew profile

The skew is not at equilibrium

N-domains result from mutation asymmetry in germline cells

> Does the "N" result from:

Transcription specifically organized

Replication specifically organized

> Does the "N" result from:

Replication specifically organized

> Does the "N" result from:

Previous study on transcriptional asymmetry

Group 2: △ = [C→T] – [G→A]

Previous study on transcriptional asymmetry

Group 2: $\triangle = [C \rightarrow T] - [G \rightarrow A]$

Group 2: △ = [C→T] – [G→A]

Transcription only cannot explain the observed substitution patterns.

Replication specifically organized

"N" pattern of skew profile results from replication-associated mutational strand asymmetry.

"N" pattern of skew profile results from replication-associated mutational strand asymmetry.

For the first time, the existence of replication-associated mutational asymmetry in a eukaryotic organism is demonstrated.

QUESTION 3:

What model of replication can explain this N-pattern ?

MODEL: N-pattern results from gradient of replication fork polarity

MODEL: N-pattern results from gradient of replication fork polarity

MODEL: N-pattern results from gradient of replication fork polarity

DNA sequence

Derivative of replication timing ≈ replication fork polarity

EXPERIMENTAL VERIFICATION

Derivative of replication timing profile reproduces perfectly the "N" pattern

EXPERIMENTAL VERIFICATION

Derivative of replication timing profile reproduces perfectly the "N" pattern

N-pattern results from gradient of replication fork polarity

DOMINO MODEL FOR N-DOMAIN REPLICATION

DOMINO MODEL FOR N-DOMAIN REPLICATION

Does this kind of replication program reflect a higher order chromatin structure ?

Study by using the data of : • Nucleosome position

- Epigenetic markers
- 3C (Chromosome Conformation Capture)
- Hi-C chromosomal interaction

Acknowledgments and collaborations

Chun-Long Chen Lauranne Duquenne Yves d'Aubenton-Carafa **Claude Thermes**

(CGM, Gif sur Yvette)

Arach Goldar (CEA, iBiTec-S, Gif-sur-Yvette)

Aurélien Rappailles Guillaume Guilbaud **Olivier Hyrien** (ENS-Paris) Benjamin Audit Antoin Baker Lamia Zaghloul **Alain Arneodo**

(ENS-Lyon)

07/09/10, Jobim 2010, Montpellier

CONSERVATION OF N-DOMAINS IN MAMMALIAN GENOMES

Genes have changed but the replication program has remained identical

Mapping of initiations/terminations along a predicted origin

G. Guilbaud, O. Hyrien (ENS Paris)

Initiations occur both at the predicted origin and elsewhere in the N-domain

A majority of forks move away from the predicted origin

Distance between each upward jump and the closest initiation zone

Upward jumps are significantly associated with replication initiation zones