Exact distribution of a pattern in a set of random sequences generated by a Markov source: applications to biological data

G. Nuel, L. Regad, J. Martin and A.-C. Camproux

MAP5 (CNRS 8145), Paris Descartes University MTi (INSERM 973), Paris Diderot University IBCP (IFR 128, CNRS 5086), University of Lyon 1

JOBIM Montpellier, September 7-9, 2010

イロト イポト イヨト イヨト

Search for functional motifs in biological sequences

Motifs facts

- selection pressure \Rightarrow unusual counts (ex: TFs, CHI, etc.)
- functional motifs are well conserved across sequences
- statistically significant motifs \Rightarrow good functional candidates

Statistical framework

- $x = x_1 \dots x_\ell$ observed biological sequence
- n observed count of the motif in x
- $X = X_1 \dots X_\ell$ random sequence under a Markov model
- *N* random count of the motif in $X \Rightarrow p$ -value = $\mathbb{P}(N \ge n)$

Purpose of the talk

How to compute such p-values when considering biological datasets of a large number of short sequences ?

G. Nuel, L. Regad, J. Martin and A.-C. Camproux Exact distribution of a pattern in a set of random sequences gene

Known methods for a single sequence

Classical approaches

- Monte-Carlo simulations
- approximations (Gaussian, Poisson, Large Deviations)
- exact computations

Minimal Markov chain embedding through DFA

ex. with motif aba over the binary alphabet $\mathcal{A} = \{a, b\}$:

$$\mathbf{F} = \begin{pmatrix} \pi_{b,b} & \pi_{b,a} & 0 & 0 \\ 0 & \pi_{a,a} & \pi_{a,b} & 0 \\ \pi_{b,b} & 0 & 0 & \pi_{b,a}^* \\ 0 & \pi_{a,a} & \pi_{a,b} & 0 \end{pmatrix}$$
$$\mathbf{G}(y) = \sum_{n \ge 0} \mathbb{P}(N = n) y^n = \mathbf{u} (\mathbf{P} + y \mathbf{Q})^{\ell} \mathbf{v} \text{ with } \mathbf{T} = \mathbf{P} + \mathbf{Q}$$

Exact distribution of a pattern in a set of random sequences gene

Dealing with several sequences

Examples of biological datasets with many sequences

- protein databases (ex: 70 000 of length from 10 to 2000)
- upstream regions (ex: 30 000 regions of length 700)
- short reads (ex: 10⁶ reads of length 35)

G. Nuel, L. Regad, J. Martin and A.-C. Camproux Exact distribution of a pattern in a set of random sequences gene

Dealing with several sequences

Examples of biological datasets with many sequences

- protein databases (ex: 70 000 of length from 10 to 2000)
- upstream regions (ex: 30 000 regions of length 700)
- short reads (ex: 10⁶ reads of length 35)

Dealing with several sequences

Examples of biological datasets with many sequences

- protein databases (ex: 70 000 of length from 10 to 2000)
- upstream regions (ex: 30 000 regions of length 700)
- short reads (ex: 10⁶ reads of length 35)

Two algorithms

Notations

We consider *r* sequences of lengths $\ell_1 \leq \ell_2 \leq \ldots \leq \ell_r$ and a total of *n* occurrences of a motif of complexity *L* (DFA size).

Algorithm 1: compute directly G(y) by recursion

$$G(y) = \mathbf{u}(\mathbf{P} + y\mathbf{Q})^{\ell_1}\mathbf{v} \times \mathbf{u}(\mathbf{P} + y\mathbf{Q})^{\ell_2}\mathbf{v} \times \ldots \times \mathbf{u}(\mathbf{P} + y\mathbf{Q})^{\ell_r}\mathbf{v}$$

$$\Rightarrow O(\ell \times n \times L) \text{ with } \ell = \ell_1 + \ldots + \ell_r$$

(also valid with heterogeneous models)

Algorithm 2: compute all $G_i(y)$ recursively and combine them

$$G_1(y) = \mathbf{u}(\mathbf{P} + y\mathbf{Q})^{\ell_1}\mathbf{v}$$
 $G_2(y) = \mathbf{u}(\mathbf{P} + y\mathbf{Q})^{\ell_2}\mathbf{v}$...

hen
$$G(y) = G_1(y) imes G_2(y) imes \ldots imes G_r(y)$$

$$\Rightarrow O(\ell_r \times n \times L) + O(r \times n^2)$$

G. Nuel, L. Regad, J. Martin and A.-C. Camproux

Exact distribution of a pattern in a set of random sequences gene

Complete proteome of <i>E. coli</i> ($r = 4131$, $\ell_1 = 14$, $\ell_r = 2358$)						
PROSITE signature	L	n	exact			
PILI_CHAPERONE	226	10	3.27×10 ⁻⁴⁶			
SIGMA54_INTERACT_2	313	12	1.58×10 ⁻⁴²			
EFACTOR_GTP	320	8	4.43×10 ⁻²⁰			
ALDEHYDE_DEHYDR_CYS	331	11	5.63×10 ⁻⁹			
ADH_ZINC	478	12	8.93×10 ⁻¹⁶			
THIOLASE_1	637	5	5.76×10 ⁻⁹			
SUGAR_TRANSPORT_1	796	18	3.75×10 ^{−8}			
FGGY_KINASES_2	2668	5	2.14×10 ⁻⁴			
PTS_EIIA_TYPE_2_HIS	2758	8	7.19×10 ⁻¹⁹			
MOLYBDOPTERIN_PROK_3	3907	11	2.59×10 ⁻³⁵			
SUGAR_TRANSPORT_2	6689	10	1.22×10 ⁻⁵			

3

Upstream regions of yeast genes (r = 1.371, $\ell_1 = \ell_r = 800$)

DNA pattern	n	L	homogeneous	heterogeneous
CGCACCC*	28	10	$2.95 imes 10^{-3}$	$3.74 imes10^{-3}$
AAGAAAAA*	427	11	$1.31 imes10^{-99}$	$1.29 imes10^{-99}$
AACAACAAC	25	10	$1.76 imes10^{-6}$	$1.38 imes10^{-6}$
TCCGTGGA*	22	11	$1.12 imes10^{-6}$	$1.55 imes10^{-6}$
GCGCGCGC	18	11	$6.52 imes10^{-10}$	$1.65 imes10^{-9}$
RTAAAYAA*	391	14	$7.70 imes 10^{-12}$	$1.68 imes 10^{-12}$
WWWTTTGCTCR*	15	17	$4.15 imes 10^{-1}$	$4.09 imes10^{-1}$
A{24}	42	27	2.05×10^{-23}	$2.14 imes10^{-22}$
TAWWWWTAGM*	212	36	$3.08 imes10^{-9}$	$3.04 imes10^{-9}$
YCCNYTNRRCCGN*	11	40	$3.10 imes10^{-2}$	$3.05 imes10^{-2}$
GCGCN{6}GCGC	1	106	$8.97 imes 10^{-1}$	$8.84 imes10^{-1}$
$CGGN{8}CGG^*$	102	183	$1.26 imes 10^{-14}$	$1.73 imes 10^{-13}$
GCGCN{10}GCGC	6	464	$2.88 imes10^{-2}$	$2.84 imes10^{-2}$

G. Nuel, L. Regad, J. Martin and A.-C. Camproux Exact distribution of a pattern in a set of random sequences gene

< 回 > < 回 > < 回 >

э

Research

イロト イポト イヨト イヨト

÷.

Exact distribution of a pattern in a set of random sequences generated by a Markov source: applications to biological data

Gregory Nuel^{1,2,3} 🔀, Leslie Regad^{4,5*} 🔀, Juliette Martin^{4,6,7*} 🖂 and Anne-Claude Camproux^{4,5} 🔀

- 1 LSG, Laboratoire Statistique et Génome, CNRS UMR-8071, INRA UMR-1152, University of Evry, Evry, France
- 2 CNRS, Paris, France
- 3 MAP5, Department of Applied Mathematics, CNRS UMR-8145, University Paris Descartes, Paris, France
- 4 EBGM, Equipe de Bioinformatique Génomique et Moleculaire, INSERM UMRS-726, University Paris Diderot, Paris, France
- 5 MTi, Molecules Thérapeutique in silico, INSERM UMRS-973, University Paris Diderot, Paris, France
- 6 MIG, Mathématique Informatique et Genome, INRA UR-1077, Jouy-en-Josas, France
- 7 IBCP, Institut de Biologie et Chimie des Protéines, IFR 128, CNRS UMR 5086, University of Lyon 1, Lyon, France

🖂 author email 🛛 🖾 corresponding author email 🛛 * Contributed equally

Algorithms for Molecular Biology 2010, 5:15 doi:10.1186/1748-7188-5-15

The electronic version of this article is the complete one and can be found online at: <u>http://www.almob.org/content/5/1/15</u>

Received: 22 September 2009 Accepted: 26 January 2010 Published: 26 January 2010