

Protein sequences classification by means of feature extraction with substitution matrices

Rabie SAIDI Mondher Maddouri Engelbert Mephu Nguifo

JOBIM'10, Montpellier

Protein sequences classification by means of feature extraction with substitution matrices

Content

Proposed encoding method : DDSM

New sequence S

Protein sequences classification by means of feature extraction with substitution matrices

- Alignment

 BLAST, FAST
- HMM profiles – HMMER, SAM
- A query belongs to the subject class with the best hit score
- Fundamentally depend on homology
 Fail when classes contain distant sequences
- Non-discriminative (a score accompanied by e-value)

Motif extraction selection	>SEQ 1 MEIPAVTEP <u>SYNTV</u> AKNDFMSGFLCFSINV <u>RAF</u> GITVPTPLYSLVFIIGVIGHVLVV <u>LVLQH</u> KRLRNMTSIYLFNLAISDLVFLSTLPFWV DYI <u>MKGD</u> WIFGNAMCKFVSGFYYLGLYSDMFFITLLTIDRYLAVVHVVFALRARTVTFGIISSIITW <u>VLAA</u> LVSIPCLYVFKSQMEFTYH								- F			
\int	>SEQ 2 MAATASE NLAISNLL	PQPLATEDAL	DSENSSFYYY SISVAW MKG	D <mark>RAF</mark> YLDEV 3D HWVFGS	AFMLCRKDA FLCKMHCCF	vvsfgkvfl Spilyaf <mark>ssh</mark> i	PVFYSLIFVLO RFRQYLKAFL	GLSGNLLLLM AAVLGWHL/	VLLRYVPRRF	RMVEIYLL	•	Prep – I
RAF SSH FFIT MKGD FYCG VLAA LVLQH	>SEQ 3 MPTVASPLPLTTV <u>SYNTV</u> GSENSSSIYDYDYLDDMTILVCRKDEVLSFGRVFLPVVYSLIFVLGLAGNLLLLVVLLHSAPRRRTMELYLLN LAVSNLLFVVTMPFWAISVAWHWVFGSFLCKVISTLYSINFYCGIFFITCMSLDKYLEIVHAQPLFYCGHRPKAQFRNLLLI <u>VMVWI</u> TSL AISVPEMLTLFLHSLLDLHVF MKGD GNCEISHRLDYTLVLQHLQVTESLAFSHCCFT >SEQ 4 MPTIASPLPLATTGPENGSSIYDYDYLDDVTVLVCS <u>RAF</u> EVLSFGRVFLPVVYSLIFVL <u>VLAA</u> GLAGNLLLLVVLLHSVPQRRRMIELYLL NLAVSNLLFVVTMPFWAISVAWHWVFGSFLCKVVSTLYSIN <u>FYCG</u> IFFITCMSLDKYLEIVHAQP <u>VMVWI</u> LHRPKTRFRNLLVWIT									- s - s 		
VMVWI SYNTV]		
		RAF	SSH	FFIT	MKGD	FYCG	VLAA	LVLQH	VMVWI	SYNTV	•	LOSS
	SEQ 1	1	0	0	1	0	1	1	0	1		- [
151	SEQ 2	1	1	0	1	0	0	0	0	0	•	Effic
V	SEQ 3	0	0	1	1	1	0	1	1	1		botte
Encoding	SEQ 4	1	0	0	0	1	1	0	1	0		Delle

- Data: protein sequences
 - Alphabet: 20 amino acids
 - Format inadequate for ML ou DM
 - − → Preprocessing is needed

Preprocessing:

- Looking for descriptors / motifs
- Using them as attributes
- structural and functional importance of preserved regions
- These regions can be used as descriptors for the bio-sequences [Nevill-Manning et al, 1998]

Loss of information ?

- Due to format change
- Efficient preprocessing → better results
 - Exp: accuracy in classification

- N-Grams [Shannon, 1951]
- Active Motifs [Wang et al, 1999]
- Discriminative Descriptors [Maddouri et al, 2004]
- Amino Acid Composition [Zhang et al, 2003]
- Functional Domain Composition [Yu et al, 2006]

- The mentioned methods neglect the substitution
- Some amino acids have similar proprieties
 - Some substitution can be without effect on the function nor the structure of the protein
 - \rightarrow Same thing can be deduced for features
- Idea : use substitution matrices to define similarity between features
 - Only one of the substitutable features is kept
 - Number of features will be reduced
 - Any impact on classification?

- Let *M* and *M*' 2 motifs composed of *k* amino acids
- For each amino acid of M with index i, its probability P_i
 to not mutate is :

$$P_i = S(M[i], M[i]) / \sum_{i=1}^{20} S^+(M[i], AA_j)$$

- $-AA_{j}$ is the amino acid with index j among the 20 amino acids
- The probability P_m that M mutate to other motifs, is :

$$P_m(M) = 1 - \prod_{i=1}^k P_i$$

$$- P_m(LLK) = 1 - (4/9 * 4/9 * 5/9) = 0.89$$

• We note by $S_m(M, M')$ the score of substitution of a motif M' by a motif M :

$$S_m(M, M') = \sum_{i=1}^{\kappa} S(M[i], M'[i])$$

$$-S_m(LLK, VMK) = 8$$

 $- S_m(LLK, LLK) = 13$

• We note by *PS* (*M*, *M*') the probability of substitution of a motif *M*' by a motif *M*

 $PS(M, M') = S_m(M, M') / S_m(M, M)$

- PS(LLK, VMK) = 8 / 13 = 0.61

- A motif *M* substitutes a motif *M*' if :
 - M and M' have the same length k,
 - $\; S(M[i], \, M'[i]) > = \; O \; , \; i = 1 \ldots \; k,$
 - $-PS(M, M') \ge T$, where T is a user-specified threshold : $0 \le T \le 1$.

- Research of repeated words (adaptation of the KMR algorithm [Karp et al, 1972])
 - Equivalence notion
- Discrimination : **x** is discriminative of a family **fi**
 - Occurrence rate of x in $fi \ge \alpha$
 - Occurrence rate de x in others $f \leq \beta$
- Minimality
 - A sub-sequence is called minimal if it does not contain other discriminative sub-sequences.
- Example

- Identification of main motifs and filtering
 - The motifs are clustered in groups
 - Group : a *main motif MM* + other motifs
 - MM substitutes all the motifs in its group
 - MM: the most likely motif in its cluster to mutate to other motifs i.e having the highest Pm in its group
 - Filtering : keep only MM
 - <u>Example</u>
- Construction of the context (binary vectors)
 - Compare each motif with the k-grams (k=length of motif) of each sequence
 - Until find a substitute and note 1 in the binary table
 - Or cross the whole sequence without finding a substitute and note 0
 - \rightarrow Richer context

Experiments & results Protocol

Protein sequences classification by means of feature extraction with substitution matrices

Experiments & results data

Dataset (source)	Identity percentage	Family/class	Size	Total		
		Monomer	208			
		Homodimer	335			
DS1	25 %	Homotrimer	40			
(Yu et al, 2006) BMC Bioinformatics		Homotetramer	95	717		
Diffe Diotityormanes		Homopentamer	11			
		Homohexamer	23			
		Homooctamer	5			
		All- α domain	70	277		
DS2 (They at al. 2006)	84 %	All-β domain	61			
Anal Biochim		α / β domain	81			
		$\alpha + \beta$ domain	65			
		Drotoin convences of	accification	humaana		

of feature extraction with substitution matrices

Experiments & results Substitution matrix effect – DS1 & DS2

Substitution matrix	Attributes	Accuracy (%)					
		C4.5	SVM	NB	NN		
Blosum45	377	78.5	79.2	59.4	77.7		
Blosum62	508	79.2	78.9	59.4	77		
Blosum80	532	77.6	80.5	60	77.6		
Pam30	2873	77.8	82	60.3	76.7		
Pam70	802	78.1	80.5	60.5	77		
Pam250	1123	77.3	79.4	59.6	78.7		
Substitution matrix	Attributes	Accuracy (%)					
		C4.5	SVM	NB	NN		
Blosum45	2603	69.3	82.3	85.9	78		
Blosum62	3083	73.3	82.3	85.9	78		
Blosum80	3146	70.1	82.3	84.1	78		
Pam30	3830	69.3	82.3	84.5	78		
Pam70	3822	70.4	82.3	84.5	78		
Pam250	969	66.1	85.2	79.4	78		
17			Protein s	Protein sequences classification by means			

Conclusion

- Motif-based encoding
 - May allow reliable description of protein
 - Allow the injection of external information (pH, temperature,...)
- DDSM (discriminative descriptors with substitution matrix)
 - A discriminative enconding method taking the substitution into account
 - Low number of features
 - Helps with classification task
 - Coupled with SVM : effcient protein classifier
- Blosum matrices with higher numbers and Pam matrices with low numbers allow the building of fewer features
- Variances of accuracies are slight when varying the substitution matrices with the same classifier

Conclusion

• More can be found in [Saidi et al., BMC Bioinformatics 2010]

Тор	Research article Open Access	BMC Bioinformatics
Abstract Background	Protein sequences classification by means of feature extraction with substitution matrices	Viewing options: • Abstract
Methods and R Discussion an Competing interests	 Rabie Saidi^{1,2,3,4} ⋈, Mondher Maddouri^{4,5} ⋈ and Engelbert Mephu Nguifo^{1,2} ⋈ LIMOS - Blaise Pascal University - Clermont University, BP 10448, Clermont-Ferrand 63000, France LIMOS - CNRS UMR 6158, Aubière 63173, France Department of Computer Science - FSJ - University of Jendouba, UMA Street, Jendouba 8100, Tunisia URPAH - FST - University of Tunis El Manar, Academic Campus, Tunis 2092, Tunisia Department of Computer Science - FSG - University of Gafsa, Campus of Sidi Ahmed Zarroug, Gafsa 2112, Tunisia 	 Full text PDF (947KB) Additional files Associated material: Readers' comments PubMed record
Authors' contributions	Mauthor email Corresponding author email BMC Bioinformatics 2010, 11: 175 doi:10.1186/1471-2105-11-175	Related literature: • Articles citing this article on Google Scholar
Acknowledgements References	The electronic version of this article is the complete one and can be found online at: <u>http://www.biomedcentral.com</u> /1471-2105/11/175	on PubMed Central ■ Other articles by authors ⊕on Google Scholar
Karerences	Received: 4 September 2009 Accepted: 8 April 2010 Published: 8 April 2010 © 2010 Saidi et al; licensee BioMed Central Ltd.	 ⊕on PubMed Related articles/pages on Google on Google Scholar on PubMed

This work was partially supported by the French-Tunisian project CMCU-Utique 05G1412 and the LifeGrid PREFON_META project

JOBIM'10, Montpellier