Piecewise smooth hybrid systems as models for networks in molecular biology Application to cell cycle models

Vincent Noel^{1,2} Sergei Vakulenko⁴ Ovidiu Radulescu^{2,3}

¹Université de Rennes 1 - CNRS 6025 (IRMAR)

²Université de Montpellier 2, DIMNP - UMR 5235

³INRIA Rennes Bretagne Atlantique

⁴Saint Petersburg State University of Technology and Design

September 8, 2010

< 日 > < 四 > < 回 >

200

- Cell cycle
- Cell cycle control
- Cell cycle models
- Hybrid model approach
 - Why using Smooth Hybrid Models ?
 - Non linear modes
 - Transitions
 - Discrete interactions
 - Definition
 - Algorithm
- 3 A simple exemple
 - Goldbeter model
 - Modes
 - Hybrid model parameters
 - Transition matrix
 - Results

э

• Regulating cell proliferation

• Tumors are result of uncontrolled cell proliferation

• A need to understand exactly how it happen

- Multiple phases and checkpoints
- A complex regulation
- Links with signaling pathways remain unclear

Vincent NOEL

Cell cycle models

- A lot of different models
- Extremely difficult to build
- A few names : Tyson, Novak, Goldbeter
- Need to be linked with signaling pathways

• Some of the components act like switchs, according to thresholds

• Cell cycle models need to describe the dynamic of interactions

• Need to combine continuous and discrete interactions

• A way to simplify, and help model dynamics analysis

Non linear modes

• Trajectories can be divided into phases, or modes

• A mode is a subset of the model between two transitions, which has simpler non linear dynamics

• Understanding how a model can switch from one mode to another is also important

7 / 17

Finding transitions

• Transitions are fast changes in reaction flows

- We can extract this information from the second derivative of trajectories
- Found transitions correspond to transitions between cell cycle phases

Vincent NOEL

Piecewise smooth hybrid systems as models for networks in molecular biology

Discrete interactions

During modes, some interactions can be activated or inactivated

• Activity of reaction CycB-Cdk1 + p27 -> CycB-Cdk1-p27 :

 Activity of reactions CycA-Cdk2 + p27 -> CycA-Cdk2-p27, CycD-Cdk4/6 + p27 -> CycD-Cdk4/6-p27, CycE-Cdk2 + p27 -> CycE-Cdk2-p27 :

• Helps to understand the specificity of each mode

Mathematical Framework

Hybrid dynamical systems (HDS) consist of two components
a continuous part, u, defined by

$$\frac{du_i}{dt} = f_i(u(t), s(t)), \quad t > 0, \tag{1}$$

where $u = (u_1, u_2, ..., u_n) \in \mathbf{R}^n$

• and a discrete part $s(t) \in S$, where S is a finite set of states. $s = (s_1(t), s_2(t), ..., s_m(t))$, where $s_j \in \{0, 1\}$

$$\frac{du_{i}}{dt} = \sum_{k=1}^{N} s_{k} P_{ik}(u) + P_{i}^{0}(u) - \sum_{l=1}^{M} \tilde{s}_{l} Q_{il}(u) - Q_{i}^{0}(u),$$

$$s_{j} = H(\sum_{k=1}^{n} w_{jk} u_{k} - h_{j}), \quad \tilde{s}_{l} = H(\sum_{k=1}^{M} \tilde{w}_{lk} u_{k} - \tilde{h}_{l}), \quad (2)$$

The goal of this algorithm is to generate an hybrid model from a continuous model.

Identify transitions

• Build modes by identifying discrete reactions

Parameter fitting

• Finding transition conditions

Vincent NOEL Piecewise smooth hybrid systems as models for networks in molecular biology 11 / 17

• A minimal cell cycle model

- Only three components : Cyclin, Cdk (Cyclin dependant kinase), and a Protease (degrading the cyclin)
- We observe 2 transitions, on Cyclin and Cdk

Vincent NOEL

12 / 17

• In this exemple, we will only consider the transition on Cyclin

• The Cyclin degradation by the protease is a discrete interaction

• Two modes, one with cyclin degradation by protease, and one without

Hybrid model definition :

$$\frac{dC}{dt} = k_1 - \tilde{k}_1 CH(X - \tilde{h}_1) - \tilde{k}_1^0 C$$

$$\frac{dM}{dt} = (k_2 MC + k_1^0) - \tilde{k}_2^0 M$$

$$\frac{dX}{dt} = (k_3 M + k_2^0) - \tilde{k}_3^0 X$$
(3)

- The continous part will be multivariate monomials, plus some basal terms
- The discrete part acts on the cyclin degradation by the kinase
- Then, to find all model parameters , we use a global optimisation algorithm (simulated annealing) based on trajectories distance.

Once we have all the model parameters, we need to compute the transition matrix, to find transition conditions.

• For mode 1, degradation activated :

$$\sum_{j}(w_{j}u_{j}(t)-h_{j})>=0$$
 for all $t\in T_{k1}$

• For mode 2, degradation desactivated :

$$\sum_{j} (w_j u_j(t) - h_j) < 0$$
 for all $t \in T_{k2}$

To find transition conditions, we solve this system of inequations

• Good dynamical approximation

• Condition to activate/desactivate protease degradation :

$$-5.1588 * [C] + 5.1688 * [M] + 2.5325 * [X] >= 1$$
(4)

Vincent NOEL Piecewise sn

16 / 17

- We need to automatize the way we define modes
- The algorithm must be adapted for large number of variables
- We have to include signaling pathways

$$s_{j} = H(\sum_{k=1}^{n} w_{jk}u_{k} + w_{jm}i_{m} - h_{j}),$$

$$\tilde{s}_{l} = H(\sum_{k=1}^{M} \tilde{w}_{lk}u_{k} + \tilde{w}_{jn}i_{n} - \tilde{h}_{l})$$
(5)

Vincent NOEL Piecewise smooth hybrid systems as models for networks in molecular biology