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Problem

t0
t1

tn

≈ 10s microarrays over time

≈ 1000s probes (“genes”)

Inference

Which interactions?

The main statistical issue is the high dimensional setting.
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Handling the scarcity of the data
By introducing some prior

Priors should be biologically grounded

1. few genes effectively interact (sparsity),
2. networks are organized (latent clustering),
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Gaussian Graphical Model for Time-course data

Collecting gene expression

1. Follow-up of one single experiment/individual;
2. Close enough time-points to ensure

I dependency between consecutive measurements;
I homogeneity of the Markov process.
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Gaussian Graphical Model for Time-Course data

Assumption
A microarray can be represented as a multivariate Gaussian
vector X = (X(1), . . . , X(p)) ∈ Rp, following a first order vector
autoregressive process V AR(1):

Xt = ΘXt−1 + b + εt, t ∈ [1, n]

where we are looking for Θ = (θij)i,j∈P .

Graphical interpretation
conditional dependency between Xt−1(j) and Xt(i)

l
non null partial correlation between Xt−1(j) and Xt(i)

l
θij 6= 0

if and only if
i

j

k
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Gaussian Graphical Model for Time-course data

Let
I X be the n× p matrix whose kth row is Xk,
I S = n−1Xᵀ

\nX\n be the within time covariance matrix,

I V = n−1Xᵀ
\nX\0 be the across time covariance matrix.

The log-likelihood

Ltime(Θ; S,V) = n Trace (VΘ)− n

2
Trace (ΘᵀSΘ) + c.

 Maximum Likelihood Estimator Θ̂MLE = S−1V
I not defined for n < p;
I even if n > p, requires multiple testing.
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Structured regularization
`1 penalized log-likelihood

Charbonnier, Chiquet, Ambroise, SAGMB 2010

Θ̂λ = arg max
Θ

Ltime(Θ; S,V)− λ ·
∑
i,j∈P

PZ
ij |Θij |

where λ is an overall tuning parameter and PZ is a
(non-symmetric) matrix of weights depending on the underlying
clustering Z.

It performs
1. regularization (needed when n� p),
2. selection (specificity of the `1-norm),
3. cluster-driven inference (penalty adapted to Z).
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Structured regularization
“Bayesian” interpretation of `1 regularization

Laplacian prior on Θ depends on the clustering Z

P(Θ|Z) ∝
∏
i,j

exp
{
−λ ·PZ

ij · |Θij |
}
.

PZ summarizes prior information on the position of edges
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How to come up with a latent clustering?

Biological expertise

I Build Z from prior biological information
I transcription factors vs. regulatees,
I number of potential binding sites,
I KEGG pathways, . . .

I Build the weight matrix from Z.

Inference: Erdös-Rényi Mixture for Networks
(Daudin et al., 2008)

I Spread the nodes into Q classes;
I Connexion probabilities depends upon node classes:

P(i→ j|i ∈ class q, j ∈ class `) = πq`.

I Build PZ ∝ 1− πq`.
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Algorithm

SIMoNESuppose you want to recover a clustered network:

Target Adjacency Matrix

Graph

Target Network
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Algorithm

SIMoNEStart with microarray data

Data
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Algorithm

SIMoNE

Data
Adjacency Matrix

corresponding to G?

Inference without prior
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Algorithm

SIMoNE

Data
Adjacency Matrix

corresponding to G?

Inference without prior

πZ

Connectivity matrix

Mixer

Penalty matrix PZ

Decreasing transformation
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Algorithm

SIMoNE

Data
Adjacency Matrix

corresponding to G?

Inference without prior

πZ

Connectivity matrix

Mixer

Penalty matrix PZ

Decreasing transformation

Adjacency Matrix
corresponding to G?

Z

+

Inference with clustered prior
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Tuning the penalty parameter
BIC / AIC

Degrees of freedom of the Lasso (Zou et al. 2008)

df(β̂λ) =
∑
k

1(β̂λk 6= 0)

Straightforward extensions to the graphical framework

BIC(λ) = L(Θ̂λ; X)− df(Θ̂λ)
log n

2

AIC(λ) = L(Θ̂λ; X)− df(Θ̂λ)

I Rely on asymptotic approximations,
but still relevant on simulated small samples.
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Inference methods

1. Lasso (Tibshirani)

2. Adaptive Lasso (Zou et al.)
Weights inversely proportional to an initial Lasso estimate.

3. KnwCl
Weights structured according to true clustering.

4. InfCl
Weights structured according to inferred clustering.

5. Renet-VAR (Shimamura et al.)
Edge estimation based on a recursive elastic net.

6. G1DBN (Lèbre et al.)
Edge estimation based on dynamic Bayesian networks followed by statistical

testing of edges.

7. Shrinkage (Opgen-Rhein et al.)
Edge estimation based on shrinkage followed by multiple testing local false

discovery rate correction.
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Simulations: time-course data with star-pattern

Simulation settings

I 2 classes, hubs and leaves, with proportions α = (0.1, 0.9),
I K = 2p edges, among which:

I 85% from hubs to leaves,
I 15% between hubs.

p genes n arrays samples
20 40 500
20 20 500
20 10 500

100 100 200
100 50 200
800 20 100
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Simulations: time-course data with star-pattern
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Reasonnable computing time
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Figure: Computing times on the log-log scale for Renet-VAR, G1DBN
and InfCl (including inference of classes). Intel Dual Core 3.40 GHz
processor.
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E. coli S.O.S DNA repair network

E.coli S.O.S data

Assigning numbers to the arrows: Parameterizing a
gene regulation network by using accurate
expression kinetics
Michal Ronen†, Revital Rosenberg†, Boris I. Shraiman‡, and Uri Alon†§¶

Departments of †Molecular Cell Biology and §Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel; and ‡Bell Laboratories,
Lucent Technologies, Murray Hill, NJ 07974

Edited by David Botstein, Stanford University School of Medicine, Stanford, CA, and approved June 5, 2002 (received for review January 28, 2002)

A basic challenge in systems biology is to understand the dynam-
ical behavior of gene regulation networks. Current approaches aim
at determining the network structure based on genomic-scale data.
However, the network connectivity alone is not sufficient to define
its dynamics; one needs to also specify the kinetic parameters for
the regulation reactions. Here, we ask whether effective kinetic
parameters can be assigned to a transcriptional network based on
expression data. We present a combined experimental and theo-
retical approach based on accurate high temporal-resolution mea-
surement of promoter activities from living cells by using green
fluorescent protein (GFP) reporter plasmids. We present algorithms
that use these data to assign effective kinetic parameters within a
mathematical model of the network. To demonstrate this, we
employ a well defined network, the SOS DNA repair system of
Escherichia coli. We find a strikingly detailed temporal program of
expression that correlates with the functional role of the SOS
genes and is driven by a hierarchy of effective kinetic parameter
strengths for the various promoters. The calculated parameters can
be used to determine the kinetics of all SOS genes given the
expression profile of just one representative, allowing a significant
reduction in complexity. The concentration profile of the master
SOS transcriptional repressor can be calculated, demonstrating
that relative protein levels may be determined from purely tran-
scriptional data. This finding opens the possibility of assigning
kinetic parameters to transcriptional networks on a genomic scale.

There is much interest in understanding the design principles
underlying the structure and dynamics of gene regulation

networks (1–10, 36). Determining the dynamic behavior of these
systems requires specifying not only the network connectivity,
but also the kinetic parameters for the various regulation
reactions. Standard biochemical methods of measuring these
kinetic parameters are usually done outside of the cellular
context and cannot be easily scaled up to a genomic level. It
would therefore be valuable to develop methods to assign
effective kinetic parameters to transcriptional networks based on
in vivo measurements. Here we present an approach for deter-
mining the effective kinetic parameters of a transcriptional
network based on accurate promoter activity measurements and
analysis algorithms (Fig. 1).

We developed a system for real-time monitoring of the
transcriptional activity of operons by means of low-copy reporter
plasmids (10) in which a promoter controls green fluorescent
protein (GFP) (11). In each plasmid a different promoter
controls the transcription rate of the same reporter gene, gfp, and
thus rate of transcript production from the promoter is propor-
tional to the rate of GFP accumulation. By continuous mea-
surements from living cells grown in a multiwell plate fluorim-
eter, high-resolution time courses of the promoter strength and
cell density are obtained. With this method, temporal resolution
of minutes can be achieved. This process complements, at higher
accuracy, the genomic-scale perspective given by DNA microar-
rays (12). In a previous study, we demonstrated that this ap-
proach can be used to determine the order of genes in an

assembly pathway (10). Here, we extend it by presenting analysis
algorithms that use accurate expression data to assign kinetic
parameters that can be incorporated into a mathematical model
of the dynamics.

We apply this method to a well characterized transcriptional
network, the SOS DNA repair system in Escherichia coli. The
SOS system includes about 30 operons regulated at the tran-
scriptional level (12–16). A master repressor (LexA) binds sites
in the promoter regions of these operons (16, 17). One of the
SOS proteins, RecA, acts as a sensor of DNA damage: by binding
to single-stranded DNA it becomes activated and mediates LexA
autocleavage. The drop in LexA levels causes the de-repression
of the SOS genes (Fig. 2). Once damage has been repaired or
bypassed, the level of activated RecA drops, LexA accumulates
and represses the SOS operons, and the cells return to their
original state.

We demonstrate that effective kinetic parameters can be used
to detect SOS genes with additional regulation, capture the
temporal transcriptional program, and calculate the concentra-
tion profile of the regulatory protein.

Methods
Plasmids and Strains. Promoter regions were amplified from
MG1655 genomic DNA by using PCR and the following start
and end coordinates for the primers taken from the sequenced
E. coli genome (18): uvrA (4271368–4271753), uvrD (3995429–
3995664), lexA (4254491–4254751), recA (2821707–2821893),
ruvA (1943919–1944201), polB (65704–65932), umuD (1229552–
1230069), uvrY (1993282–1993900), and lacZ (365438–365669).
Each amplified region includes the entire region between ORFs
with an additional 50–150 bp into each of the flanking ORFs.
The promoter regions were cloned by using XhoI and BamHI
sites upstream of a promoterless GFPmut3 gene in a low copy
pSC101 origin plasmid as described (10). The plasmids were
transformed into E. coli strain AB1157 [argE3, his4, leuB6,
proA2, thr1, ara14, galK2, lacY1, mtl1, xyl5, thi1, tsx33, rpsL31, and
supE44] (24).

Culture and Measurements. Cultures of strain AB1157 (1 ml)
inoculated from glycerol frozen stocks were grown for 16 h in LB
medium with kanamycin (25 !g!ml) at 37°C with shaking at 250
rpm. The cultures were diluted 1:100 into defined medium (24)
[M9 supplemented with thiamine (10 !g!ml), glucose (2 mg!
ml), MgSO4 (1 mM), MgCl2 (0.1 mM), thymine (20 !g!ml), each
of the 20 aa except tryptophan (50 !g!ml) ! 25 !g!ml kana-
mycin], at a final volume of 100 !l per well in a flat-bottom
96-well plate (Sarstedt). The cultures were covered with an
adhesive pad to prevent evaporation and grown in a Wallac
Victor2 multiwell f luorimeter at 37°C, set with an automatically

This paper was submitted directly (Track II) to the PNAS office.

Abbreviation: GFP, green fluorescent protein.
¶To whom reprint requests should be addressed. E-mail: urialon@weizmann.ac.il.

www.pnas.org!cgi!doi!10.1073!pnas.152046799 PNAS " August 6, 2002 " vol. 99 " no. 16 " 10555–10560
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E. coli S.O.S DNA repair network
Precision and Recall rates
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E. coli S.O.S DNA repair network
Inferred networks
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Conclusions

To sum-up

I cluster-driven inference of gene regulatory networks from
time-course data,

I expert-based or inferred latent structure,
I embedded in the SIMoNe R package along with similar

algorithms dealing with steady-state or multitask data.

Perspectives

I inference of truely dynamic networks,
I use of additive biological information to refine the

inference,
I comparison of inferred networks.
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