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=~ 10s microarrays over time

Which interactions?
~ 1000s probes (“genes”)

The main statistical issue is the high dimensional sefting.
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Handling the scarcity of the data
By introducing some prior

Priors should be biologically grounded
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Handling the scarcity of the data
By introducing some prior

Priors should be biologically grounded

1. few genes effectively interact (sparsity),
2. networks are organized (latent clustering),
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Statistical models

Gaussian Graphical Model for Time-course data
Structured Regularization

Algorithms and methods
Overall view
Model selection

Numerical experiments
Inference methods
Performance on simulated data
E. coli S.0.S DNA repair network
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Gaussian Graphical Model for Time-course data

Collecting gene expression

1. Follow-up of one single experiment/individual;
2. Close enough time-points to ensure

» dependency between consecutive measurements;
» homogeneity of the Markov process.
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Gaussian Graphical Model for Time-course data

Collecting gene expression

1. Follow-up of one single experiment/individual;
2. Close enough time-points to ensure

» dependency between consecutive measurements;
» homogeneity of the Markov process.
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Gaussian Graphical Model for Time-Course data

Assumption

A microarray can be represented as a multivariate Gaussian
vector X = (X(1),...,X(p)) € RP, following a first order vector
autoregressive process VAR(1):

X;=0OX; 1+b+¢g, te [1, TL]

where we are looking for ® = (6;;); jep.
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Gaussian Graphical Model for Time-Course data

Assumption

A microarray can be represented as a multivariate Gaussian
vector X = (X(1),...,X(p)) € RP, following a first order vector
autoregressive process VAR(1):

Xt = @Xt,1 + b+ g, te€ [1, n]
where we are looking for ® = (0;5); jep.

Graphical interpretation
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Gaussian Graphical Model for Time-course data

Let
» X be the n x p matrix whose kth row is X,
»S= n—lx{nX\n be the within time covariance matrix,

> V= n*lxgnx\o be the across time covariance matrix.
The log-likelihood

Liime(©:S, V) = n Trace (VO) — gTrace (©7SO) + c.

~~ Maximum Likelihood Estimator @M LE = §-1v
» not defined forn < p;
» even if n > p, requires multiple testing.
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Structured regularization

¢, penalized log-likelihood

Charbonnier, Chiquet, Ambroise, SAGMB 2010

©) = arg max Liime(©;S, V) — \ - Z PZ-Zj|(~)Z-j\
e “
i,jEP
where X\ is an overall tuning parameter and PZ is a

(non-symmetric) matrix of weights depending on the underlying
clustering Z.

It performs
1. regularization (needed when n < p),
2. selection (specificity of the £;-norm),
3. cluster-driven inference (penalty adapted to Z).
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Structured regularization

“Bayesian” interpretation of ¢; regularization

Laplacian prior on ® depends on the clustering Z

P(®|Z) o« [[exp {-\-PZ%-1©;]}.
2%

Pz summarizes prior information on the position of edges
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How to come up with a latent clustering?

Biological expertise

» Build Z from prior biological information

» franscription factors vs. regulatees,
» number of potential binding sites,
» KEGG pathways, ...

» Build the weight matrix from Z.

Inference: Erdds-Rényi Mixture for Networks
(Daudin et al., 2008)

» Spread the nodes into Q classes;
» Connexion probabilities depends upon node classes:

P(i — jli € class g, j € class £) = mg.
> Build Pz o 1 — 7y
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Algorithm

Suppose you want to recover a clustered network:

Target Adjacency Matrix

Target Network
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Algorithm

Start with microarray data

Data
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Algorithm

Inference without prior

Adjacency Matrix

Data corresponding to G*
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Algorithm

Inference without prior

Adjacghcy Matrix
corresgbnding to G*

Penalty matrid\P Data

Decreasing fransformation

Connectivity matrix

Camille Charbonnier and Julien Chiquet and Christophe Ambroise il




Algorithm

Inference with clustered prior

Inference without prior

Adjacency Matrix
corresgbnding to G* corresponding fo G

Penalty matrid\P Data

Decreasing fransformation

Connectivity matrix
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Tuning the penalty parameter
BIC / AIC
Degrees of freedom of the Lasso (Zou et al. 2008)

df(5*) =Y 15 #0)

k

Straightforward extensions to the graphical framework

BIC(\) = £(Oy: X) — df(©)) 1o§ n

AIC(\) = £(0); X) — df(©,)

» Rely on asymptotic approximations,
but still relevant on simulated small samples.
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Inference methods

1. Lasso (Tibshirani)
2. Adaptive Lasso (Zou et al.)
Weights inversely proportional o an initial Lasso estimate.
3. KnwCl
Weights structured according to true clustering.
4. InfCl
Weights structured according to inferred clustering.
5. Renet-VAR (Shimamura et al.)
Edge estimation based on a recursive elastic net.
6. G1DBN (Lebre et al.)
Edge estimation based on dynamic Bayesian networks followed by statistical
testing of edges.
7. Shrinkage (Opgen-Rhein et al.)
Edge estimation based on shrinkage followed by multiple testing local false
discovery rate correction.
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Simulations: time-course data with star-pattern

Simulation settings

» 2 classes, hubs and leaves, with proportions e = (0.1,0.9),

» K = 2pedges, among which:
» 85% from hubs to leaves,

» 15% between hubs.

pgenes narrays samples
20 40 500
20 20 500
20 10 500
100 100 200
100 50 200
800 20 100
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Simulations: time-course data with star-pattern

a) p=20, n=40
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Reasonnable computing time

G1DBN - £
-- Renet-VAR
— InfCl

10

log of CPU time (sec)

25 3.0 35 4.0 4.5 5.0

log of p/n

Figure: Computing times on the log-log scale for Renet-VAR, G1DBN
and InfCl (including inference of classes). Intel Dual Core 3.40 GHz
processor.
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E. coliS.O.S DNA repair network

E.coliS.O.S data

Assigning numbers to the arrows: Parameterizing a
gene regulation network by using accurate
expression kinetics

Michal Ronen’, Revital Rosenberg*, Boris I. Shraiman?*, and Uri Alon's"
exA
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» 8 major genes involved in
the S.O.S. response recA
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» 50 fime points
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E. coliS.O.S DNA repair network
Precision and Recall rates
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E. coliS.O.S DNA repair network
Inferred networks

Adaptive-Lasso
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Conclusions

To sum-up
» cluster-driven inference of gene regulatory networks from
fime-course data,
» expert-based or inferred latent structure,

» embedded in the SIMoNe R package along with similar
algorithms dealing with steady-state or multitask data.

Perspectives

» inference of truely dynamic networks,

» use of additive biological information to refine the
inference,

» comparison of inferred networks.
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